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Abstract. We improve the technique for finding roots of univariate al-
gebraic equations over a finite field of characteristic 2. We evaluate the
theoretical complexity in worst case of the existing algorithms and deter-
mine the best trade-off between the Berlekamp trace algorithm [Ber71]
and the algorithms of Zinoviev [Zin96] (see below), depending on system
parameters.
Root finding of polynomials over finite fields is a classical algebraic algo-
rithmic problem. Several approaches like Berlekamp [Ber68] and Chien
[CCO69] have been made towards the solution of this problem which
possesses applications in theoretical computer science : in algebraic cod-
ing theory and in code-based cryptography. The proposed solutions are
applicable for decoding binary Goppa codes and BCH codes. Decoding
of code-based public-key cryptosystems employs an algebraic decoding
algorithm which is often broken up in three parts : syndrome computa-
tion, solve the key equation with the extended Euclidean algorithm or
Berlekamp Massey algorithm and the root finding of error locator poly-
nomial. This last stage is the most time consuming for cryptographic
parameters. It consists of computing t roots of a polynomial S which
splits over F2m , an extension field of degree m over the two-element field
F2. These roots provide location of errors. Enhancing the root finding
algorithms enables to speed up the decoding process. Since McEliece-
type cryptosystems are based on binary Goppa codes, our work helps to
decrease significantly the decryption time of a ciphertext. As an exam-
ple, for recommended values of paramaters, given in [BS08], we have to
compute 32 distinct roots of a polynomial of degree 32 with coefficients
in F211 .
In conventional applications of codes, fields have smaller size and Chien
search is often considered as a fitted trade-off. For decryption purpose,
use of more sophisticated techniques enables a meaningful benefit [BS08].
This work is based on the algorithms proposed by Zinoviev in [Zin96],
as well as the Berlekamp trace algorithm (abbreviated BTA) [Ber71].
Zinoviev computes a multiple affine polynomial in order to find the roots
of polynomials of degree ≤ 10 over binary fields. BTA is a recursive root
finding algorithm and relies on properties of trace function. The trace
function Tr(·) : F2m → F2 is defined by Tr(z) = z+z2+z22

+. . .+z2m−1
.

A key property of the trace function is that, if {β1, . . . , βm} is any basis
of F2m over F2, then every element α ∈ F2m is uniquely represented
by the binary m-tuple : (Tr(β1 · α), . . . ,Tr(βm · α)). The basic idea of
BTA is that, any σ ∈ F2m [z] that divides (z2m − z) is factored into two
polynomials g(z) = gcd(σ(z),Tr(β ·z)) and h(z) = gcd(σ(z), 1+Tr(β ·z)).



This property of the trace ensures that if β iterates through the basis
{β1, . . . , βm}, we can split σ(z) into linear factors. The drawback of BTA
is the large number of recursive calls when the system parameters grow.
We reduce it by mixing BTA and Zinoviev’s algorithms. Thus, we obtain
the best results in terms of time complexity for finding roots.
The size of the used parameters varies according to applications. So, we
carry out our complexity computations on a range of parameters that we
judged relevant. We take into account the increasing necessity of larger
security parameters (in this case, extension field degree and degree of the
polynomial) for future applications. Therefore, we chose to study solving
algebraic equations of degree less than 300 over F2m for extension degrees
m = 8, 11, 12, 13, 14, 15, 16, 20, 30, 40.
Our idea is to compute directly the roots with Zinoviev’s algorithms up
to some degree d and to use recursively BTA for greater degrees. Zinoviev
solves this problem for polynomials of degree t ≤ 10 in [Zin96]. By the
use of dynamic programming and a complexity recurrence formula, we
succeeded in determining the best d for t ≤ 300. Simulations have been
performed in Maple and C language. We determine the algorithm to use
by evaluating the number of operations on the field in the worst case. Let
us get back to our previous example (m = 11, t = 32). Our simulations
suggest to choose d = 5 to obtain the maximum theoretical gain in
terms of number of operations, precisely 93% against Chien search and
46% against BTA.
We have a significant margin in terms of time complexity, we can make
use of it to enhance the speed of decryption of McEliece-type cryptosys-
tems. A project on implementation of these techniques is still in progress
and preliminary results confirm that our techniques are efficient.
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